
Memory Diagram Rules v0 QZ00 Study Guide COMP110
1. Establish three columns:

1. The Function Call Stack, with an initial frame for Globals

2. The Heap

3. Printed Output

2. Start at the very top of the code listing and begin by evaluating line-by-line down. When you evaluate a concept
on the left, take the action it is associated with it on the right.

Construct Action

Docstring or # Comment Ignore! Docstrings are documentation for humans. Python effectively ignores them.

Function Definition 1. In the stack’s current working frame, add the function name and value box.
2. Add a function object to the heap, labelled “Fn Lines S - E”, where S is the starting line
number of the function definition and E is the ending line number. Give the box an ID:# where #
is a number starting from 0 and increasing by one for each object added to the Heap.

3. In the stack value box for the function, enter its heap ID:# box binding it to the heap object.

4. Ignore the function body! Skip past the indented lines of the function definition body.

print Function Call Fully evaluate the print function call’s argument expression, then add the resulting value to the
Output column of your diagram. You do not need to include quotes around output.

Function Call Expression 1. Focus on the function call’s arguments, if they are expressions and not literal values, fully
evaluate the argument(s) first, from left-to-right, until each argument is a single value.

2. Look at the name of the function being called in the function call expression. Use name
resolution rules (below) to confirm this name is bound to a function definition.

3. Focus on the function definition and confirm that the function call’s argument(s) evaluated in
step 1 exactly match the order and number of parameter(s) type(’s) in the function definition.

• Do not match? Erroneous function call expression! For COMP110’s purposes, write down

“Function Call Error on Line #C”, replacing C with the line the bad function call was
encountered, and stop evaluating the program from here.

4. Establish a new function call frame on the stack

A. Draw a line separating the current working frame from the new call frame

B. Add the function’s name to the top left of the new frame

C. Beneath the function’s name, on the left side of the frame, write RA: C, where C is the

line number the function call being evaluated was written. This is the “Return Address”
the program will come back to with the value returned by the function’s evaluation.

D. On the right-hand side of the new frame, add each of the parameter names of the
function on its own line, with some space for its value.

E. Copy the fully evaluated argument values from step #1 into its corresponding parameter
value.

5. You are now ready to jump to the first line of the function definition’s body! The current
working frame is now the frame you have just established. Work through each statement in
the function body line-by-line following the same rules.

Return Statement 1. Return statements can only be found in a function definition body. Anywhere else? Error!

2. Fully evaluate and simplify the expression following the return keyword to a single value.

3. Beneath RA in the current working frame, add the label “RV: “, for “Return Value”, and beside

of it record the evaluated value you worked out in step #2.

4. Look up the RA (return address) line number of the current working frame. You are now ready

to jump to this line number and simplify or substitute/replace the function call expression on
this line which you just evaluated, with the Return Value.

5. The current working frame on the stack is now the lowest frame on the stack without an RV.

Name Resolution
(Function or Parameter
Identifiers)

1. Look in the current working frame for the name being referenced in an expression. If the
name is found here, substitute the value it is bound to for the name in the expression.

2. Not found? Look in the globals frame for the name being referenced. If found, substitute.

3. Not found in globals? NameError!

Arithmetic Expressions Evaluate arithmetic expressions using orders of operations for operators (PEMDAS). In cases of
equal precedence, such as Multiplication/Division and Addition/Subtraction, evaluate the
expression from left-to-right. Evaluate left-hand operands before right-hand operands.

